dudenkov (dudenkov) wrote,
dudenkov
dudenkov

экзотическая химия - экстремальные степени окисления, соединения элемента с самим собой

СТРАНИЦА ХИМИЧЕСКИХ РЕКОРДОВ №1
Мой острый интерес всегда вызывали и вызывают крайние проявления строения и свойств веществ. Своего рода химический экстремизм... Надеюсь, я не одинок в этом интересе и найдутся желающие пополнить свое образование или поделиться информацией. Некоторые из приводящихся ниже фактов общеизвестны из учебных курсов, но преобладают такие, которые отражают новейшие научные данные или оригинальные теоретические представления автора (последнее оговаривается). При необходимости всегда готов поделиться источниками этих фактов, но скорость не гарантирую (бумажный архив большой, а многое вношу сюда по памяти). Итак...
     НАИВЫСШАЯ ДОСТИГНУТАЯ СТЕПЕНЬ ОКИСЛЕНИЯ +VIII известна для ксенона, рутения и осмия в составе (XeO6)-4, XeO4, RuO4, OsO4, [OsO4(OH)2]-2, (OsO3N)-1, OsO3F2, (Os2O9)-2, (OsO3F3)-1 и некоторых других соединений. НАИВЫСШИЕ ВОЗМОЖНЫЕ СТЕПЕНИ ОКИСЛЕНИЯ +IX и +X на основании квантовохимических расчетов предсказывались для (IrO4)+1, IrH9 и (PtO4)+2. Я считаю, что предлагавшийся в литературе путь получения этих степеней окисления применением сильных окислителей в щелочных средах, просто абсурден. Если бы химики мыслили менее стереотипно, может быть, соли (IrO4)+1 (например, с SbF6-1, BF4-1, PtF6-1) давно уже были получены. Дело в том, что вследствие геометрически обусловленной ограниченности координационных чисел КЧ, в бинарных соединениях вида АБx при росте степени окисления А вдоль периодов таблицы Менделеева при фиксированном Б может наступить момент, когда из-за насыщения КЧ(А) предшествовавший РОСТ КИСЛОТНОСТИ (подробно описываемый в учебниках) "неожиданно" РЕЗКО СМЕНЯЕТСЯ ИНЕРТНОСТЬЮ (примеры - CF4, CCl4, SiCl4, SiBr4, SF6, SeF6 и относительно инертные RuO4, OsO4, TeF6, следующие за сильнокислыми BF3, BCl3, AlCl3, AlBr3, PF5, AsF5, Tc2O7, Re2O7, SbF5). Мало того, при дальнейшем росте степени окисления A ВОЗНИКАЮТ ОСНОВНЫЕ СВОЙСТВА! (Примеры: (PBr4)+1Br-1, (NF4)+1(HF2)-1, соли катионов (ClF6)+1, (BrF6)+1). При наличии высокоэнергетичных, но еще достижимых повышенных КЧ(А), возможна АМФОТЕРНОСТЬ, наиболее ярко проявляющаяся в ионной структуре (примеры - (NO2)+1(NO3)-1, (PCl4)+1(PCl6)-1). Подобную амфотерность можно ожидать и для гипотетического Ir2O9, но он (как и соли IrO5-1), может оказаться кинетически неустойчив из-за значительно меньших энергий связи, чем в (IrO4)+1. А электрохимический синтез последнего (например, в среде суперкислот) должен быть затруднен тем, что на аноде будет возникать неблагоприятная основная среда, а на катоде, притягательном для иридиевого сырья, возможно только выделение металла. Но другие пути получения Ir(+IX) возможны! У меня давно созрел замысел, пока только нет времени, сырья и оборудования. Не исключаю возможность серьезного сотрудничества с желающими, имеющими опыт работы с этим элементом (и, разумеется, лицензия на такую работу) и потребность быть соавторами хорошо цитируемых публикаций.
     НИЗШИЕ ДОСТОВЕРНО ДОСТИГНУТЫЕ СТЕПЕНИ ОКИСЛЕНИЯ -V для B, Ga, In, Tl (соединения BeAlB, Al3BC, Mg5Ga2, Mg5In2, Mg5Tl2, LiMg2Ga), -VI для Zn, Hg (соединения Ca3Zn, Mg3Hg, Ca3Hg, Sr3Hg, Ba3Hg). В ряде других известных интерметаллидов, для которых мне пока не удалось собрать достаточно полную информацию о составах и структурах, МОГУТ ПРИСУТСТВОВАТЬ ЕЩЕ БОЛЕЕ НИЗКИЕ СТЕПЕНИ ОКИСЛЕНИЯ -VII (для Cu, Ag и Au в соединениях приблизительного состава Si7Cu4, Al7Au3, Mg7Ag2), -VIII (для Ni, Pd и Pt в соединениях приблизительного состава Be4Ni, Be4Pd, Be4Pt, Si2Ni, Al8Pt3, Mg4Pd, Ln7Pt3, Ln7Pd3), -IX (для Co, Rh, Ir в соединениях приблизительного состава Be9Co2, Ln3Co, Ln3Rh, Ln3Ir, Si9Co4, Th9Co4) и даже -X (в соединениях приблизительного состава Be5Fe, Th5Fe2, Th5Ru2, Th5Rh2). Хотя представления о наличии металлических анионов в полярных интерметаллидах развита давно (автор Цинтль, Zintl) и ныне широко признаны, гипотезу о наличии одноатомных анионов подобного рода в соединениях перечисленного списка мне удалось найти в литературе только применительно к ртути и другим металлам 13 подгруппы. Я обратил внимание, что особенно наглядно доказывает наличие экстремальных, сверхнизких степеней окисления сравнение бинарных соединений магния с одноатомными анионами: MgH2, MgF2, MgCl2, MgBr2, MgI2, MgO, MgS, MgSe, MgTe, MgPo, Mg3N2, Mg3P2, Mg3As2, Mg3Sb2, Mg3Bi2, Mg2C? (синтез при высоком давлении), Mg2Si, Mg2Ge, Mg2Sn, Mg2Pb, Mg5Ga2, Mg5In2, Mg5Tl2, Mg3Hg. Во всех этих соединениях анионы образуют плотноупакованную или очень близкую к ней решетку, а важнейшие свойства типа длин связей, ширин запрещенных зон изменяются плавно, что говорит и о плавном изменении типа связи от чисто ионного к ионно-металлическому. Переход же к металлическому типу связи обычно происходит резко и встречается при наименьшей разности электроотрицательностей, обычно только при плавлении. А вот Mg5In2 при нагревании еще до плавления обратимо переходит в фазу типично металлического строения с широкой областью гомогенности, а Mg3Cd представляет такую фазу уже при обычных условиях, а при нагревании дает бесспорно металлический твердый раствор магния и кадмия.
    
     ЭЛЕМЕНТЫ-ПСЕВДОСОЕДИНЕНИЯ - это как бы "соединения элемента с собой", в котором часть атомов имеет положительную степень окисления, а остальная часть - отрицательную (или же часть атомов образуют анионы, а остальные - катионы). Из вузовского учебника неорганической химии Ахметова известна трактовка озона O3 как ОКСИДА КИСЛОРОДА (IV) OO2, что согласуется с его строением, подобным SO2, и распределением эффективных зарядов.
     Другим примером должен оказаться НИТРИД АЗОТА (V) N3N5, для которого я ожидаю ионное строение (N2N3)+1(NN2)-1 (азид азидодиазония (N5)+1(N3)-1, или в терминологии Ахметова - динитридонитрат (V) тринитридодинитрония (V)). Из числа его компонентов, азид ион давно и хорошо известен, а соли азидодиазония (предсказанные мной вместе со способом синтеза (из N2F2, (N3)-1 и AsF5) и свойствами в неопубликованной работе 1991 года, обсуждавшейся с друзьями) успешно получены именно этим способом к 1999 году другими авторами. Проведенный мной квантовохимический расчет полуэмпирическим методом PM3, пригодным для описания вандерваальсовых сил, показал, что химическое связывание (N5)+1 и (N3)-1 в нейтральную молекулу N8 со строением диазидодиазина или азидопентазола хотя и выгодно, но барьер должен быть достаточно высоким, чтобы азид азидодиазония (pentanitrogen azide) мог быть выделен в индивидуальном состоянии. 
      Другими примерами являются три из четырех аллотропов элементарного бора, содержащие в полостях трехмерной сетки, состоящей из соединенных обычными двухцентровыми связями пространственно-ароматических икосаэдрических и родственных им кластеров, катионоподобные атомы бора B+3 или группы (B2)+4. То есть, эти полиморфы бора по существу представляют собой ПОЛИБОРИДЫ БОРА! Например, строение наиблее термостойкой формы бора - бета-ромбоэдрического бора - приблизительно таково: (B+3)19/9((B2)+4)2/3((B12)-2)4((B27)B(B28))2/3((B27)B(B27)-3)1/3, где B+3 и (B2)+4 легко замещаются на занимающие более крупные полости структуры разнообразные металлы, и даже прилегающие неметаллы Si+4 и Ge+4. Икосаэдрический ион B12H12-2 и его разнообразные замещенные, известные с 1962 года, обладают экстремально высокой химической и термической стойкостью, что позволяет говорить о борном аналоге органической химии. Например, соль Na2B12H12 устойчива в любых водных растворах (кроме азотной кислоты), абсолютно нетоксична (у нас нет ферментов, способных разрушать этот анион) и могла бы служить заменой поваренной соли, если бы не ее цена, а на ионообменной колонке можно получить сильную кислоту (H3O)2B12H12 в форме гигроскопичного кристаллогидрата. Соль Cs2B12H12 устойчива в вакууме до 800 градусов Цельсия, что гораздо выше температуры разложения бензола. Если у бензола 2 резонансные формы, то у аниона B12H12-2 их целых 240. Водород в этом анионе может замещаться на разнообразные группы - F, Cl, Br, I, OH, OR, OR2+1, NH3+1, NR3+1, PR3+1, CH3, SH, SCN, SeCN, S2BS-1, Se2BSe-1, HgOOCCF3, CN, NCR+1, OOCR, N(H)C(OH)R+1, CO+, C(OH)2+1, причем для части из этих групп (галогены, OH, CH3, ртуть- и халькогенсодержащие) известно полное замещение. Родственная молекула B10Cl8(N2)2 содержит диазониевые заместители, стабильные вплоть до 180 градусов Цельсия. От аниона B12H12-2 производится семейство сверхслабокоординирующих анионов, в последние годы позволивших выделить в твердом состоянии многие экзотические анионы. Так что ионное строение бора в действительности скорее закономерность, чем экзотика.
     Могут ли у других элементов быть аллотропы-псевдосоединения? Это вопрос. Есть основания ожидать предполагать у серы возможность ОЗОНОПОДОБНОЙ ФОРМЫ - СУЛЬФИДА СЕРЫ (IV) SS2, поскольку она будет логическим завершением ряда из двух известных изоструктурных соединений - диоксида серы SO2 и ОКСОСУЛЬФИДА СЕРЫ (IV) SSO. Однако имеющаяся у газообразного SSO склонность к полимеризации при низкотемпературной конденсации, дает основание для достаточно драматичного прогноза о степени кинетической устойчивости SS2. Я предлагаю следующий возможный способ "поймать" SS2 - экстрагировать четыреххлористым углеродом или другими инертными растворителями серу из продуктов взаимодействия SSF2 (ТИОФТОРИДА СЕРЫ (IV)) с сульфидами активных металлов. Но шансов мало - SS2  сам должен быть весьма реакционноспособен, давая полисульфид ...

Tags: азиды, безметаллические ионные вещества, девятивалентный иридий, ионные интерметаллиды, клозо, координационное насыщение, озон, пространственная ароматичность, рекорды, соли пентазота, степени окисления, фазы Цинтля, химия, элементарный бор
Subscribe
  • Post a new comment

    Error

    Anonymous comments are disabled in this journal

    default userpic
  • 2 comments